www.tarainstitute.com

TARA/NDA-NA/Mathematics/02

- **1.** The resultant of two forces 3P and 2P is R, if the first force is doubled, the resultant is also doubled. The angle between the forces is
 - (a) $\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$
 - 3

1

- (c) $\frac{\pi}{6}$ (d) $\frac{5\pi}{6}$
- 2. The resultant of two forces \vec{P} and \vec{Q} is of magnitude P. If the force \vec{P} is doubled, \vec{Q} remaining unaltered, the new resultant will be
 - (a) Along \vec{P} (b) Along \vec{Q}
 - (c) At 60° to \vec{Q} (d) At right angle to \vec{Q}
- **3.** P, Q, R are the points on the sides BC, CA, AB of the triangle ABC such that BP : PC = CQ : QA = AR : RB = m : n. If Δ denotes the area of the ΔABC , then the forces $\overrightarrow{AP}, \overrightarrow{BQ}, \overrightarrow{CR}$ reduce to a couple whose moment is
 - (a) $2\frac{m+n}{m-n}\Delta$ (b) $2\frac{n-m}{n+m}\Delta$ (c) $2(m^2 - n^2)\Delta$ (d) $2(m^2 + n^2)\Delta$
- **4.** If the resultant of forces P,Q,R acting along the sides BC, CA, AB of a $\triangle ABC$ passes through its circumcentre, then
 - (a) $P \sin A + Q \sin B + R \sin C = 0$
 - (b) $P\cos A + Q\cos B + R\cos C = 0$
 - (C) $P \sec A + Q \sec B + R \sec C = 0$
 - (d) $P \tan A + Q \tan B + R \tan C = 0$
- **5.** A system of five forces whose directions and nonzero magnitudes can be chosen arbitrarily, will never be in equilibrium if n of the forces are concurrent, where

(a) n=2 (b) n=3

- (c) n = 4 (d) n = 5
- 6. The minimum force required to move a body of weight W placed on a rough horizontal plane surface is

(a)	Wsin	λ		(b)	Wcosλ

- (c) $W \tan \lambda$ (d) $W \cot \lambda$
- **7.** A body of weight 4 kg is kept in a plane inclined at an angle of 30° to the horizontal. It is in limiting equilibrium. The coefficient of friction is then equal to
 - (a) $\frac{1}{\sqrt{3}}$ (b) $\sqrt{3}$
 - (c) $\frac{1}{4\sqrt{3}}$ (d) $\frac{\sqrt{3}}{4}$

- 8. If $A = \begin{bmatrix} 2 & 2 \\ a & b \end{bmatrix}$ and $A^2 = O$, then (a, b) =(a) (-2, -2) (b) (2, -2)(c) (-2, 2) (d) (2, 2)9. If $[m \ n] \begin{bmatrix} m \\ n \end{bmatrix} = [25]$ and m < n, then (m, n) =(a) (2, 3) (b) (3, 4)(c) (4, 3) (d) None of these
- **10.** $\begin{vmatrix} a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} =$ (a) $a^3 + b^3 + c^3 - 3abc$ (b) $a^3 + b^3 + c^3 + 3abc$ (c) (a + b + c)(a - b)(b - c)(c - a)(d) None of these
- **11.** With reference to a universal set, the inclusion of a subset in another, is relation, which is
 - (a) Symmetric only (b) Equivalence relation
 - (c) Reflexive only (d) None of these
- Let R be a relation on the set N of natural numbers defined by nRm ⇔ n is a factor of m (i.e., n|m). Then R is
 - (a) Reflexive and symmetric
 - (b) Transitive and symmetric
 - (c) Equivalence
 - (d) Reflexive, transitive but not symmetric
- Let R and S be two non-void relations on a set A. Which of the following statements is false
 - (a) R and S are transitive \Rightarrow R \cup S is transitive
 - (b) R and S are transitive \Rightarrow R \cap S is transitive
 - (c) R and S are symmetric \Rightarrow R \cup S is symmetric
 - (d) R and S are reflexive \Rightarrow R \cap S is reflexive
- **14.** Let a relation R be defined by $R = \{(4, 5); (1, 4); (4, 5)\}$
 - 6); (7, 6); (3, 7)} then R⁻¹oR is
 - (a) {(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)}
 - (b) {(1, 1), (4, 4), (7, 7), (3, 3)}
 - (c) {(1, 5), (1, 6), (3, 6)}
 - (d) None of these

INSTITUTE

15. Let R be a relation on the set N be defined by $\{(x,$

(b) Symmetric

- y) $| x, y \in N, 2x + y = 41$. Then R is
- (a) Reflexive
- (c) Transitive (d) None of these

2	www.tarainstitute.in	TA	RA/NDA-NA/Mathematics/02
16. In a class of 55 students, the number studying different subjects are 23 in Matherin Physics, 19 in Chemistry, 12 in Mather Physics, 9 in Mathematics and Chem Physics and Chemistry and 4 in all the thread the number of students who have taken of the number of students who have taken of the students who	ematics, 24 ematics and 25. istry, 7 in ee subjects.		(b) 0 (d) 2 of λ the sum of the squares of the $\lambda x - \frac{1}{2}(1 + \lambda) = 0$ is minimum
 subject is (a) 6 (b) 9 (c) 7 (d) All of these 17. If A, B and C are any three sets, then A × 	26.	(a) $3/2$ (c) $1/2$ The product of $x^2 - x - 6 = 0$ is	(b) 1 (d) 11/4 all real roots of the equation
equal to (a) $(A \times B) \cup (A \times C)$ (b) $(A \cup B) \times$ (c) $(A \times B) \cap (A \times C)$ (d) None of the 18. If A, B and C are any three sets, then A – equal to	$(A \cup C)$ ese 27 .	•	(b) 6 (d) 36 $3x^2 + px + 3 = 0, p > 0$ if one of the he other, then p is equal
(a) $(A - B) \cup (A - C)$ (b) $(A - B) \cap (A - B)$ (c) $(A - B) \cup C$ (d) $(A - B) \cap C$ 19. In a triangle <i>ABC</i> the value of $\angle A$ is	C s given by	(a) $\frac{1}{3}$ (c) 3	(b) 1 (d) $\frac{2}{3}$
5 cos $A + 3 = 0$, then the equation whose sin A and tan A will be (a) $15x^2 - 8x + 16 = 0$ (b) $15x^2 + 8x - (c) 15x^2 - 8\sqrt{2}x + 16 = 0$ (d) $15x^2 - 8x - 20$. If one root of the equation $ax^2 + bx + c = 0$	- 16 = 0 - 16 = 0		and H_1 , H_2 be AM 's, GM 's and two quantities, then the value of
20. If one root of the equation $ax^2 + bx + c = 0$ of the other, then $a(c-b)^3 = cX$, where X is (a) $a^3 + b^3$ (b) $(a-b)^3$ (c) $a^3 - b^3$ (d) None of the		(a) $\frac{A_1 + A_2}{H_1 + H_2}$ (c) $\frac{A_1 + A_2}{H_1 - H_2}$	(b) $\frac{A_1 - A_2}{H_1 + H_2}$ (d) $\frac{A_1 - A_2}{H_1 - H_2}$
21. If 8, 2 are the roots of $x^2 + ax + \beta = 0$ are the roots of $x^2 + \alpha x + b = 0$, then the $x^2 + ax + b = 0$ are (a) 8, -1 (b) -9, 2	e roots of		ean of two numbers is 4 and the eometric means satisfy the relation numbers are (b) 5, 4 (d) -3, 1
(c) $-8,-2$ (d) 9, 1 22. The set of values of x which satisfy $5x$ and $\frac{x+2}{x-1} < 4$, is (c) $(2, 2)$	+ 2 < 3 <i>x</i> + 8 30 .	If the A.M. of two	o numbers is greater than G.M. c 2 and the ratio of the numbers i
(a) $(2,3)$ (b) $(-\infty,1) \cup (2,3)$ (c) $(-\infty,1)$ (d) $(1,3)$	31.	(c) 16, 4 If $\frac{2z_1}{3z_2}$ is a purely	(d) None of these imaginary number, then $\left \frac{z_1 - z_2}{z_1 + z_2}\right =$
23. If α, β are the roots of $x^2 - ax + b = \alpha^n + \beta^n = V_n$, then (a) $V_{n+1} = aV_n + bV_{n-1}$ (b) $V_{n+1} = aV_n + bV_n + bV_n$	$+ aV_{n-1}$ 32 .	(a) $3/2$ (c) $2/3$ If z_1 and z_2 are	(b) 1 (d) 4/9 e any two complex numbers the
(c) $V_{n+1} = aV_n - bV_{n-1}$ (d) $V_{n+1} = aV_{n-1}$ 24. The value of 'c'for which $ \alpha^2 - \beta^2 = \frac{7}{4}$	where a		$ z_2 ^2$ is equal to (b) $2 z_1 ^2 + 2 z_2 ^2$ (d) $2 z_1 z_2 $

33. If z is a complex number such that $\frac{z-1}{z+1}$ is purely imaginary, then (a) |z| = 0(b) |z| = 1(C) |z| > 1(d) |z| < 1**34.** If z is a complex number, then which of the following is not true (a) $|z^2| = |z|^2$ (b) $|z^2| = |\overline{z}|^2$ (d) $\overline{z}^2 = \overline{z}^2$ (C) $z = \overline{z}$ 35. If the coefficient of 4th term in the expansion of $(a+b)^n$ is 56, then n is (a) 12 (b) 10 (c) 8 (d) 6 **36.** The coefficient of x^{100} in the expansion of $\sum_{i=1}^{200} (1+x)^{j}$ is $\begin{pmatrix} 201\\ 102 \end{pmatrix}$ 200 (a) 100 $\binom{200}{101}$ (d) $\begin{pmatrix} 201 \\ 100 \end{pmatrix}$ (c) **37.** For $2 \le r \le n_r \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2}$ is equal to (b) $2\binom{n+1}{r+1}$ (a) $\binom{n+1}{r-1}$ (d) $\binom{n+2}{}$ (c) $2\binom{n+2}{r}$ **38.** The number of positive integral solutions of abc = 30is (a) 30 (b) 27 (d) None of these (c) 8 39. The points A (1, 3) and C (5, 1) are the opposite vertices of rectangle. The equation of line passing through other two vertices and of gradient 2, is (a) 2x + y - 8 = 0(b) 2x - y - 4 = 0(c) 2x - y + 4 = 0(d) 2x + y + 7 = 040. The intercept cut off from y-axis is twice that from xaxis by the line and line is passes through (1, 2) then its equation is (b) 2x + y + 4 = 0(a) 2x + y = 4(d) 2x - y + 4 = 0(c) 2x - y = 441. The extremities of a diagonal of a parallelogram are the points (3,-4) and (-6,5). If third vertex is (-2,1), then fourth vertex is (a) (1,0) (b) (-1,0) (C) (1, 1) (d) None of these

42. (0, -1) and (0, 3) are two opposite vertices of a square. The other two vertices are (a) (0, 1), (0, -3)(b) (3, -1) (0, 0)(c) (2, 1), (-2, 1) (d) (2, 2), (1, 1) **43.** If A(3,5), B(-5, -4), C(7,10) are the vertices of a parallelogram, taken in the order, then the coordinates of the fourth vertex are (a) (10, 19) (b) (15, 10) (c) (19, 10) (d) (19, 15) (e) (15, 19) 44. If the point (a, a) are placed in between the lines |x+y|=4, then (a) |a| = 2(b) | a | = 3 (c) | a | < 2 (d) | a| < 3 45. The equation of the locus of foot of perpendiculars drawn from the origin to the line passing through a fixed point (a, b), is (a) $x^2 + y^2 - ax - by = 0$ (b) $x^2 + y^2 + ax + by = 0$ (c) $x^2 + y^2 - 2ax - 2by = 0$ (d) None of these 46. The area bounded by the angle bisectors of the lines $x^{2} - y^{2} + 2y = 1$ and the line x + y = 3, is (a) 2 (b) 3 (d) 6 (c) 4 If $p = \frac{2\sin\theta}{1 + \cos\theta + \sin\theta}$, and $q = \frac{\cos\theta}{1 + \sin\theta}$, then 47. (b) $\frac{q}{p} = 1$ (a) pq=1(c) q - p = 1(d) q + p = 148. If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n$, then (a) $m^2 - n^2 = 4mn$ (b) $m^2 + n^2 = 4mn$ (c) $m^2 - n^2 = m^2 + n^2$ (d) $m^2 - n^2 = 4\sqrt{mn}$ **49.** If $\tan \theta = \frac{a}{b}$, then $\frac{\sin \theta}{\cos^8 \theta} + \frac{\cos \theta}{\sin^8 \theta} =$ (a) $\pm \frac{(a^2 + b^2)^4}{\sqrt{a^2 + b^2}} \left(\frac{a}{b^8} + \frac{b}{a^8}\right)$ (b) $\pm \frac{(a^2 + b^2)^4}{\sqrt{a^2 + b^2}} \left(\frac{a}{b^8} - \frac{b}{a^8}\right)$ (c) $\pm \frac{(a^2 - b^2)^4}{\sqrt{a^2 + b^2}} \left(\frac{a}{b^8} + \frac{b}{a^8}\right)$ (d) $\pm \frac{(a^2 - b^2)^4}{\sqrt{a^2 - b^2}} \left(\frac{a}{b^8} - \frac{b}{a^8}\right)$ **50.** If $a\cos\theta + b\sin\theta = m$ and $a\sin\theta - b\cos\theta = n$, then $a^2 + b^2 =$ (b) $m^2 - n^2$ (a) m + n(c) $m^2 + n^2$ (d) None of these **51.** If $\sin 2\theta + \sin 2\phi = 1/2$ and $\cos 2\theta + \cos 2\phi = 3/2$, then $\cos^2(\theta - \phi) =$ (a) 3/8 (b) 5/8 (d) 5/4 (C) 3/4

X TARA

3

www.tarainstitute.com

TARA/NDA-NA/Mathematics/02

4 **52.** $\cos 2(\theta + \phi) - 4\cos(\theta + \phi)\sin\theta\sin\phi + 2\sin^2\phi =$ (a) $\cos 2\theta$ (b) $\cos 3\theta$ (C) $\sin 2\theta$ (d) sin 3θ 53. Which of the following number(s) is/are rational (a) sin 15° (b) cos 15° (C) sin 15° cos 15° (d) sin 15° cos 75° **54.** $\cos 15^\circ =$ (a) $\sqrt{\frac{1+\cos 30^{\circ}}{2}}$ (b) $\sqrt{\frac{1-\cos 30^{\circ}}{2}}$ (d) $\pm \sqrt{\frac{1-\cos 30^\circ}{2}}$ (c) $\pm \sqrt{\frac{1 + \cos 30^{\circ}}{2}}$ 55. If sin A + cos A = $\sqrt{2}$, then cos² A = (b) $\frac{1}{2}$ (a) $\frac{1}{4}$ (d) $\frac{3}{2}$ (c) $\frac{1}{\sqrt{2}}$ **56.** $\cos^{-1}\sqrt{1-x} + \sin^{-1}\sqrt{1-x} =$ (b) $\frac{\pi}{2}$ (a) π (d) 0 (c) 1 **57.** $\cos\left[2\cos^{-1}\frac{1}{5}+\sin^{-1}\frac{1}{5}\right]=$ (a) $\frac{2\sqrt{6}}{5}$ (b) $-\frac{2\sqrt{6}}{5}$ (c) $\frac{1}{5}$ (d) $-\frac{1}{5}$ **58.** If $2\cos^2 x + 3\sin x - 3 = 0$, $0 \le x \le 180^\circ$, then x =(a) 30°,90°,150° (b) 60°,120°,180° (c) $0^{\circ}, 30^{\circ}, 150^{\circ}$ (d) 45°,90°,135° **59.** The equation $\sin x + \cos x = 2$ has (a) One solution (b) Two solutions (c) Infinite number of solutions (d) No solutions **60.** In a triangle ABC, a = 4, b = 3, $\angle A = 60^{\circ}$. Then c is the root of the equation (a) $c^2 - 3c - 7 = 0$ (b) $c^2 + 3c + 7 = 0$ (c) $c^2 - 3c + 7 = 0$ (d) $c^2 + 3c - 7 = 0$ **61.** If a = 2, b = 3, c = 5 in $\triangle ABC$, then C = (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{2}$ (d) None of these

62. A ladder rests against a wall making an angle α with the horizontal. The foot of the ladder is pulled away from the wall through a distance x, so that it slides a distance y down the wall making an angle β with the horizontal. The correct relation is

(a)
$$x = y \tan \frac{\alpha + \beta}{2}$$
 (b) $y = x \tan \frac{\alpha + \beta}{2}$

(c) $x = y \tan(\alpha + \beta)$ (d) $y = x \tan(\alpha + \beta)$

- 63. The shadow of a tower is found to be 60 metre shorter when the sun's altitude changes from 30° to 60°. The height of the tower from the ground is approximately equal to
 - (a) 62m (b) 301m (c) 101m (d) 52m
- If the domain of function $f(x) = x^2 6x + 7$ is $(-\infty, \infty)$, 64. then the range of function is

(a)
$$(-\infty, \infty)$$
 (b) $[-2, \infty)$
(c) $(-2, 3)$ (d) $(-\infty, -2)$
65. $\lim_{x \to \infty} \left[\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4} \right] =$
(a) $\frac{1}{2}$ (b) $\frac{1}{3}$
(c) $\frac{1}{4}$ (d) None of these
66. $\lim_{x \to 0} \frac{y^2}{x} = \dots$, where $y^2 = ax + bx^2 + cx^3$
(a) 0 (b) 1
(c) a (d) None of these
67. If $f(x) = \begin{cases} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x} & \text{, for } -1 \le x < 0 \\ 2x^2 + 3x - 2 & \text{, for } 0 \le x \le 1 \end{cases}$ is

continuous at
$$x = 0$$
, then $k =$
(a) -4 (b) -3
(c) -2 (d) -1
68. The function $f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$, so that $f(x)$ is continuous at $x = \pi$, is
(a) $-\frac{1}{2}$ (b) $\frac{1}{2}$

69. Let *f* be differentiable for all *x*. If
$$f(1) = -2$$

 $f'(x) \ge 2$ for $x \in [1,6]$, then
(a) $f(6) < 5$ (b) $f(6) = 5$

and

(c)
$$f(6) \ge 8$$
 (d) $f(6) < 8$

```
INSTITUT
```

www.tarainstitute.in

TARA/NDA-NA/Mathematics/02

www.tarainstitute.com

5 **70.** f(x) = ||x| - 1| is not differentiable at (a) 0 (b) ±1,0 (c) 1 (d) ±1 **71.** The radius of a circle which touches y-axis at (0,3) and cuts intercept of 8 units with x-axis, is (a) 3 (b) 2 (c) 5 (d) 8 72. A point P moves in such a way that the ratio of its distance from two coplanar points is always a fixed number $(\neq 1)$. Then its locus is (a) Straight line (b) Circle (c) Parabola (d) A pair of straight lines 73. The point of intersection of the latus rectum and axis of the parabola $y^2 + 4x + 2y - 8 = 0$ (a) (5/4, -1) (b) (9/4, -1) (c) (7/2, 5/2) (d) None of these **74.** The point of contact of the tangent 18x - 6y + 1 = 0 to the parabola $y^2 = 2x$ is (a) $\left(\frac{-1}{18}, \frac{-1}{3}\right)$ (b) $\left(\frac{-1}{18}, \frac{1}{3}\right)$ (c) $\left(\frac{1}{18}, \frac{-1}{3}\right)$ (d) $\left(\frac{1}{18}, \frac{1}{3}\right)$ **75.** The position of the point (4, -3) with respect to the ellipse $2x^{2} + 5y^{2} = 20$ is (a) Outside the ellipse (b) On the ellipse (c) On the major axis (d) None of these 76. The equation of the tangent to the ellipse $x^{2} + 16y^{2} = 16$ making an angle of 60° with x-axis is (a) $\sqrt{3}x - y + 7 = 0$ (b) $\sqrt{3}x - y - 7 = 0$ (c) $\sqrt{3}x - y \pm 7 = 0$ (d) None of these 77. What will be equation of that chord of hyperbola $25x^2 - 16y^2 = 400$, whose mid point is (5, 3) (a) 115x - 117y = 17(b) 125x - 48y = 481(c) 127x + 33y = 341(d) 15x + 121y = 105**78.** The value of m, for which the line $y = mx + \frac{25\sqrt{3}}{2}$, is a normal to the conic $\frac{x^2}{16} - \frac{y^2}{9} = 1$, is (a) √3 (b) $-\frac{2}{\sqrt{3}}$ (c) $-\frac{\sqrt{3}}{2}$ (d) 1

79. If $y = \frac{e^x \log x}{x^2}$, then $\frac{dy}{dx} =$ (b) $\frac{e^{x}[1-(x-2)\log x]}{x^4}$ (a) $\frac{e^{x}[1+(x+2)\log x]}{x^{3}}$ (c) $\frac{e^{x}[1-(x-2)\log x]}{x^{3}}$ (d) $\frac{e^{x}[1+(x-2)\log x]}{x^{3}}$ **80.** If $y = \frac{e^{2x} \cos x}{x \sin x}$, then $\frac{dy}{dx} =$ (a) $\frac{e^{2x}[(2x-1)\cot x - x\csc^2 x]}{x^2}$ (b) $\frac{e^{2x}[(2x+1)\cot x - x\csc^2 x]}{x^2}$ (c) $\frac{e^{2x}[(2x-1)\cot x + x\csc^2 x]}{x^2}$ (d) None of these **81.** $\frac{d}{dx} \{e^{-ax^2} \log(\sin x)\} =$ (a) e^{-ax^2} (cot $x + 2ax \log \sin x$) (b) e^{-ax^2} (cot $x + ax \log \sin x$) (c) e^{-ax^2} (cot $x - 2ax \log \sin x$) (d) None of these 82. The radius of the cylinder of maximum volume,

which can be inscribed in a sphere of radius R is

5

(a)
$$\frac{2}{3}R$$
 (b) $\sqrt{\frac{2}{3}}R$
(c) $\frac{3}{4}R$ (d) $\sqrt{\frac{3}{4}}R$

- **83.** The distance travelled s (in metre) by a particle in t seconds is given by, $s = t^3 + 2t^2 + t$. The speed of the particle after 1 second will be
 - (a) 8 cm/sec (b) 6 cm/sec
 - (c) 2 cm/sec (d) None of these
- **84.** If y = 4x 5 is tangent to the curve $y^2 = px^3 + q$ at (2, 3), then
 - (a) p = 2, q = -7 (b) p = -2, q = 7
 - (c) p = -2, q = -7 (d) p = 2, q = 7
- **85.** At what points of the curve $y = \frac{2}{3}x^3 + \frac{1}{2}x^2$, tangent makes the equal angle with axis

(a)
$$\left(\frac{1}{2}, \frac{5}{24}\right)$$
 and $\left(-1, -\frac{1}{6}\right)$ (b) $\left(\frac{1}{2}, \frac{4}{9}\right)$ and $\left(-1, 0\right)$
(c) $\left(\frac{1}{3}, \frac{1}{7}\right)$ and $\left(-3, \frac{1}{2}\right)$ (d) $\left(\frac{1}{3}, \frac{4}{47}\right)$ and $\left(-1, -\frac{1}{3}\right)$

ARA TARA

 $\left(6 \right)$

86.	$\frac{d}{dx} \left[\tan^{-1} \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right]$]=
	(a) $\frac{-x}{\sqrt{1-x^4}}$	(b) $\frac{x}{\sqrt{1-x^4}}$
	(c) $\frac{-1}{2\sqrt{1-x^4}}$	(d) $\frac{1}{2\sqrt{1-x^4}}$
87.	If $\sqrt{(1-x^6)} + \sqrt{(1-y^6)} = a^2$	$(x^3 - y^3)$, then $\frac{dy}{dx} =$
	(a) $\frac{x^2}{y^2}\sqrt{\frac{1-x^6}{1-y^6}}$	(b) $\frac{y^2}{x^2} \sqrt{\frac{1-y^6}{1-x^6}}$
	(c) $\frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$	(d) None of these
88.	If $y = \sec^{-1} \frac{2x}{1+x^2} + \sin^{-1} \frac{x}{x+1}$	$\frac{-1}{-1}$, then $\frac{dy}{dx}$ is equal to
	(a) 1	(b) $\frac{x-1}{x+1}$
	(c) Does not exist	(d) None of these
89.	$\int \sqrt{\frac{x}{a^3 - x^3}} dx =$	
	(a) $\sin^{-1}\left(\frac{x}{a}\right)^{3/2} + c$	(b) $\frac{2}{3}\sin^{-1}\left(\frac{x}{a}\right)^{3/2} + c$
	(c) $\frac{3}{2}\sin^{-1}\left(\frac{x}{a}\right)^{3/2} + c$	(d) $\frac{3}{2}\sin^{-1}\left(\frac{x}{a}\right)^{2/3} + c$
90 .	$\int \frac{1}{x\cos^2(1+\log x)} dx =$	
	(a) $\tan(1 + \log x) + c$	(b) $\cot(1 + \log x) + c$
	(c) $-\tan(1 + \log x) + c$	(d) $-\cot(1 + \log x) + c$
91.	$\int \frac{1}{x^2 \sqrt{1+x^2}} dx =$	
	(a) $-\frac{\sqrt{1+x^2}}{x}+c$	(b) $\frac{\sqrt{1+x^2}}{x} + c$
	(c) $-\frac{\sqrt{1-x^2}}{x}+c$	(d) $-\frac{\sqrt{x^2-1}}{x}+c$
92.	$\int \frac{1}{(x^2 - 1)\sqrt{x^2 + 1}} dx =$	
	(a) $\frac{1}{2\sqrt{2}}\log\left\{\frac{\sqrt{1+x^2}+x\sqrt{x}}{\sqrt{1+x^2}-x\sqrt{x}}\right\}$	
	(b) $\frac{1}{2\sqrt{2}}\log\left\{\frac{\sqrt{1+x^2}-\sqrt{2}}{\sqrt{1+x^2}+\sqrt{2}}\right\}$	} + <i>C</i>
	(c) $\frac{1}{2\sqrt{2}}\log\left\{\frac{\sqrt{1+x^2}-x\sqrt{1+x^2}}{\sqrt{1+x^2}+x\sqrt{1+x^2}}\right\}$	$\left[\frac{\overline{2}}{\overline{2}}\right] + c$
	(d) None of these	
_		

w.tarainsti	tute.in	TARA/NDA	A-NA/Mathematics/02
	93.	If $2f(x) - 3f\left(\frac{1}{x}\right) = x$, then	$\int_{1}^{2} f(x) dx$ is equal to
		(a) $\frac{3}{5} \ln 2$	(b) $\frac{-3}{5}(1 + \ln 2)$
		(c) $\frac{-3}{5} \ln 2$	(d) None of these
=	94.	If $\int_a^b x^3 dx = 0$ and $\int_a^b x^2 dx$	$x = \frac{2}{3}$, then the value of a
		and b will be respectively	
		(a) 1, 1	(b) –1,–1
		(c) 1,–1	(d) –1,1
	9 5.	The sine and cosine curve	es intersects infinitely many
		times giving bounded reg area of one of such region	gions of equal areas. The is
to		(a) $\sqrt{2}$	(b) 2√2
		(c) $3\sqrt{2}$	(d) $4\sqrt{2}$
	96.	The rate of increase of ba	cteria in a certain culture is
		proportional to the number	er present. If it double in 5
		hours then in 25 hours, its	number would be
		(a) 8 times the original	(b) 16 times the original
+ C		(c) 32 times the original	(d) 64 times the original
	97.	The solution of $\frac{d^2y}{dx^2} = \cos x$	$x - \sin x$ is
+ C		(a) $y = -\cos x + \sin x + c_1 x + c_2 x + c_3 x +$	+ C ₂
		(b) $y = -\cos x - \sin x + c_1 x + c_2 x + c_3 x + c_3 x + c_4 x + c_4 x + c_4 x + c_5 x +$	- C ₂
		(c) $y = \cos x - \sin x + c_1 x^2 + c_1 $	<i>C</i> ₂ <i>X</i>
		(d) $y = \cos x + \sin x + c_1 x^2 + c_1 x^2$	<i>C</i> ₂ <i>X</i>
С	98.		e differential equation
		$x^4 \frac{dy}{dx} + x^3 y + \operatorname{cosec}(xy) = 0$	•
		(a) $2\cos(xy) + x^{-2} = c$	(b) $2\cos(xy) + y^{-2} = c$
		(c) $2\sin(xy) + x^{-2} = c$	
	99.	The solution of the equ	uation $x^2 \frac{d^2 y}{dx^2} = \ln x$, when
		$x = 1$, $y = 0$ and $\frac{dy}{dx} = -1$	is
		(a) $\frac{1}{2}(\ln x)^2 + \ln x$	(b) $\frac{1}{2}(\ln x)^2 - \ln x$
		(c) $-\frac{1}{2}(\ln x)^2 + \ln x$	(d) $-\frac{1}{2}(\ln x)^2 - \ln x$
	100.	If $y \cos x + x \cos y = \pi$, then	y''(0) is
		(a) 1	(b) π
		(c) 0	(d) -π
* 14		=	

www.tarainstitute.com

- **101.** The chances of throwing a total of 3 or 5 or 11 with two dice is
 - (a) $\frac{5}{36}$ (b) $\frac{1}{9}$ (c) $\frac{2}{9}$ (d) $\frac{19}{36}$
- **102.** A six faced dice is so biased that it is twice as likely to show an even number as an odd number when thrown. It is thrown twice. The probability that the sum of two numbers thrown is even, is

(a)	<u>1</u> 12	(b) $\frac{1}{6}$
(C)	$\frac{1}{3}$	(d) $\frac{2}{3}$

103. The chance of India winning toss is 3/4. If it wins the toss, then its chance of victory is 4/5 otherwise it is only 1/2. Then chance of India's victory is

(a)	<u>1</u> 5	(b)	$\frac{3}{5}$
(C)	$\frac{3}{40}$	(d)	29 40

104. For two events A and B, if $P(A) = P\left(\frac{A}{B}\right) = \frac{1}{4}$ and

 $P\left(\frac{B}{A}\right) = \frac{1}{2}$, then

106.

(a) A and B are independent (b)

(c) $P\left(\frac{B'}{A'}\right) = \frac{1}{2}$ (

(d) All of the above

 $P\left(\frac{A'}{B}\right) =$

105. A biased die is tossed and the respective probabilities for various faces to turn up are given below

Face :	1	2	3	4	5	6
Probability :	0.1	0.24	0.19	0.18	0.15	0.14
If an even face has turned up, then the probability						
that it is face 2 or face 4, is						
(a) 0.25			(b) 0.4	12		
(c) 0.75	(d) 0.9					
If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{a} \cdot \mathbf{b} = 1$ and $\mathbf{a} \times \mathbf{b} = \mathbf{j} - \mathbf{k}$, then $\mathbf{b} =$						
(a) i			(b) i-	j+k		

(c) 2j - k (d) 2i

107. The position vectors of the vertices of a quadrilateral ABCD are a,b,c and d respectively. Area of the quadrilateral formed by joining the middle points of its sides is

- (a) $\frac{1}{4} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{d} + \mathbf{d} \times \mathbf{a} |$ (b) $\frac{1}{4} | \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{a} |$ (c) $\frac{1}{4} | \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{a} |$ (d) $\frac{1}{4} | \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + \mathbf{d} \times \mathbf{b} |$
- **108.** The moment about the point M(-2, 4, -6) of the force represented in magnitude and position by \overrightarrow{AB} where the points A and B have the co-ordinates (1, 2, -3) and (3, -4, 2) respectively, is
 - (a) 8i 9j 14k (b) 2i 6j + 5k(c) -3i + 2j - 3k (d) -5i + 8j - 8k
- **109.** If the vectors $a\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} + b\mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} + c\mathbf{k}$ $(a \neq b \neq c \neq 1)$ are coplanar, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$ (a) -1 (b) $-\frac{1}{2}$
- (c) 1/2 (d) 1 **110.** If $\alpha (\mathbf{a} \times \mathbf{b}) + \beta (\mathbf{b} \times \mathbf{c}) + \gamma (\mathbf{c} \times \mathbf{a}) = \mathbf{0}$ and at least one of the numbers α , β and γ is non-zero, then the vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are
 - (a) Perpendicular
 - Perpendicular (b) Parallel
 - (c) Coplanar (d) None of these
- **111.** The volume of the tetrahedron, whose vertices are given by the vectors $-\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{i} \mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} \mathbf{k}$ with reference to the fourth vertex as origin, is
 - (a) $\frac{5}{3}$ cubic unit (b) $\frac{2}{3}$ cubic unit (c) $\frac{3}{5}$ cubic unit (d) None of these
- **112.** Let $\mathbf{a} = \mathbf{i} \mathbf{j}$, $\mathbf{b} = \mathbf{j} \mathbf{k}$, $\mathbf{c} = \mathbf{k} \mathbf{i}$. If $\hat{\mathbf{d}}$ is a unit vector such that $\mathbf{a} \cdot \hat{\mathbf{d}} = 0 = [\mathbf{b} \ \mathbf{c} \ \hat{\mathbf{d}}]$, then $\hat{\mathbf{d}}$ is equal to

(a)
$$\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{k}}{\sqrt{3}}$$
 (b) $\pm \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$
(c) $\pm \frac{\mathbf{i} + \mathbf{j} - 2\mathbf{k}}{\sqrt{6}}$ (d) $\pm \mathbf{k}$

113. The value of 'a' so that the volume of parallelopiped formed by $\mathbf{i} + a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ and $a\mathbf{i} + \mathbf{k}$ becomes minimum is

(a)
$$-3$$
 (b) 3
(c) $\frac{1}{\sqrt{3}}$ (d) $\sqrt{3}$

A RA

7

8

8	www.tarainstitute.in
114. If b and c are any two no	n-collinear unit vectors and
a is any	vector, then
$(\mathbf{a} \cdot \mathbf{b}) \mathbf{b} + (\mathbf{a} \cdot \mathbf{c}) \mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} }$	$(\mathbf{b} \times \mathbf{c}) =$
(a) a	(b) b (d) 0
(c) c 115. Two systems of rectang	
	n at distance a, b, c and a',
b', c' from the origin, then	
(a) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + $	$\frac{1}{2} + \frac{1}{2} = 0$
	, .
(b) $\frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'}$	$\frac{1}{r^2} - \frac{1}{c'^2} = 0$
(c) $\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{a^2} + \frac{1}{a^2} - \frac{1}{b^2} + \frac{1}{a^2} + \frac{1}{a^2} - \frac{1}{b^2} + \frac{1}{a^2} + $	$\frac{1}{1} - \frac{1}{1} = 0$
(d) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a^2} - \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a^2} - \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{c^2} - \frac{1}{b^2} + \frac{1}{c^2} - $	$\frac{1}{r^2} - \frac{1}{r^2} = 0$
116. If $4x + 4y - kz = 0$ is the	
-	that contains the line
$\frac{x-1}{2} = \frac{y+1}{2} = \frac{z}{4}$, then k =	
2 3 4	
(a) 1 (c) 5	(b) 3 (d) 7
117. The distance of the point	
x - y + z = 5 measured	parallel to the line
$\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$, is	
2 3 -6 (a) 1	(b) 6/7
(a) 1 (c) 7/6	(d) None of these
118. The distance of the point	
$\frac{x-3}{z} = \frac{y-4}{z} = \frac{z-5}{z}$ and	the plane $x + y + z = 17$
1 2 2 from the point (3, 4, 5) is g	
(a) 3	(b) 3/2
(c) $\sqrt{3}$	(d) None of these
119. The lines $\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha}$	$=\frac{z-a-d}{\alpha+\delta}$ and
$\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-b-c}{\beta+\gamma}$	
$\beta - \gamma$ β $\beta - \gamma$ β $\beta + \gamma$	
equation to the plane in w	
	(b) $x - y + z = 0$
	(d) x + y - 2z = 0
120. The line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{y-4}{3}$	$\frac{z-5}{4}$ lies in the plane
4x + 4y - kz - d = 0. The v	
(a) 4, 8	(b) -5, - 3
(c) 5,3	(d) – 4, – 8
	💥 🔝 🚓 =